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nonlinear Schr ödinger equations

Laura M. Morato
Marco Caliari
Simone Zuccher
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Abstract

In this technical report we describe an application of spectral methods to nu-
merically solve some nonlinear Schrödinger equations with dissipative terms
and carefully study the problem of vortex formation.
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1 Introduction

A Bose–Einstein condensate (BEC) is a state of matter of a dilute gas of
interacting bosons confined in an external potential and cooled to tempera-
tures very near to absolute zero. Under such conditions, a large fraction of
the bosons occupies the same quantum state and quantum effects become
apparent on a macroscopic scale.

A spectacular quantum phenomenon is the formation of quantized vor-
tices when the condensate is stirred into rotation. The mechanism is not yet
completely understood and represents an active research field both in physics
and in mathematics.

A BEC trapped in an external potential is usually described by a “macro-
scopic wave function” Ψ obeying the Gross–Pitaevskii (GP) equation. In the
3D frame rotating with the frequency Ω around the Z axis the GP equation
reads

i~
∂Ψ

∂t
=

(

− ~
2

2m
∇2 + Vtrap + Vrot + g |Ψ|2 − ΩLZ

)

Ψ . (1)

Here g = 4π~
2a/m (coupling constant) represents the strength of interactions

characterized by the s-wave scattering length a > 0 and LZ = −i~(X∂Y −
Y ∂X) the angular momentum. The wave function is normalized by the total
particle number. We assume that the external harmonic trapping potential
has the form

Vtrap(X,Y, Z) =
1

2
m

[

ω2
⊥
(X2 + Y 2) + ω2

ZZ2
]

,

and that the potential that drives the rotation is

Vrot(X,Y, Z) =
1

2
mω2

⊥
(εXX2 + εY Y 2) .

with the anisotropy parameters εX 6= εY . Under a proper reduction to 2D
and normalization, equation (1) can be rewritten (in the laboratory frame)

i
∂ψ

∂t
=

(

−1

2
∇2 + V + θ |ψ|2

)

ψ . (2)

Here V is the trapping and rotating potential defined by

V (x, y, t) =
(1 + εx)

2
(x cos Ωt + y sin Ωt)2 +

(1 + εy)

2
(−x sin Ωt + y cos Ωt)2 .
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2 GPE with extrinsic dissipation

In order to study the vortex formation by numerical experiments, in [6] the
following dissipative generalization of (1) was proposed:

(i − γ)
∂ψ

∂t
=

[

−1

2
∇2 + V + θ |ψ|2 − µ + γ(x∂y − y∂x)

]

ψ . (3)

This equation somehow models friction between the condensate and the nor-
mal cloud: quoting [6, 10], “the term with γ introduces the dissipation. Al-
though the detailed mechanism of the dissipation is yet to be understood the
observation of the vortex lattices implies the presence of dissipation.” “When
the condensate is grown from a rotating vapor cloud the growth process itself
is dissipative, and in the experiments [. . . ] dissipation can arise by transfer
of atoms between the thermal cloud and the condensate. [. . . ] A dissipative
term arises from collisions between atoms in the thermal cloud trapped by the
same potential as the condensate, in which one of the colliding atoms enters
the condensate after the collision”.

One can see that a pure advection term appears. A difficulty with this
equation is that, in order to preserve the total number of particles, it is
necessary to introduce the ψ-dependent chemical potential µ. A further
problem is to understand whether this picture is valid at zero temperature
or not.

Equation (3), rewritten in the rotating frame, has been discretized in
space by a spectral method, namely Galerkin’s method applied to the decom-
position into Hermite functions (cf. [1, 3, 5]). Hermite functions naturally
vanish at infinity and, thus, no artificial boundary condition is imposed as
usually done in the literature. For the time discretization, an explicit Runge–
Kutta method of order four has been used [5]. Since the chemical potential
µ depends on ψ, given the solution ψ at a certain time, µ was computed and
kept constant for the next time step. The ground state solution (cf. [4]) of
the pure Gross–Pitaevskii Equation (i.e., γ = µ = 0) was chosen as initial
condition. We note that, if the initial condition satisfies the symmetry condi-
tion ψ0(x, y) = ψ0(−x,−y), then the same is true for the solution ψ(x, y, t),
as it can be shown by substituting x with −x and y with −y in equation (3).
According to [6], the values for the parameters were εx = 0.03, εy = 0.09 and
Ω = 0.7. The dissipation constant γ was ranging between 0 and 0.03 and the
coupling constant θ between 0 and 500/

√
2. From our simulations, we can

draw the following conclusions:

• If γ = 0 and the space discretization is fine enough, i.e., a sufficiently
large number N (N ≥ 32) of Hermite functions is used, no vortex ap-
pears during the simulation. On the contrary, if a poor space resolution
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Figure 1: |ψ|2 at time t = 244 with N = 64 Hermite functions (left) and
with N = 16 (right).
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Figure 2: |ψ|2 at time t = 360 with the whole set of Hermite basis functions
(left) and with only even Hermite basis functions (right).

is used (e.g., N = 16), then some artificial (and unstable) vortices ap-
pear during the simulation (see Figure 1). This confirms experiments
shown in [11].

• If θ = 0 (no cubic term in the equation) no vortex appears during the
simulation.

• For γ = 0.03 and θ = 500/
√

2 the simulations show results in agreement
with those reported in [6], with a final stable lattice of vortices, in which
the symmetry ψ(x, y, t) = ψ(−x,−y, t) is broken, due to numerical
effects, see Figure 2 (left).

• If only the even Hermite functions are used, than the result is a stable
and symmetric lattice of vortices, see Figure 2 (right), with an energy
slightly higher than the energy corresponding to the unsymmetric lat-
tice.
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3 Schrödinger equation with vorticity

In this section we consider a new dissipative generalization of the GP equa-
tion, recently proposed in [2]:















i
∂ψ

∂t
=

[

1

2
(i∇ + A)2 + V + θ |ψ|2

]

ψ

∂A

∂t
=

(

b∗ −
1

2
∇

)

× (∇× A)

(4)

where A is a real vector field, b∗ is defined as

b∗ = ∇S − A − 1

2
∇ ln ρ ,

being S and ρ the phase and the absolute value of ψ, i.e., ψ = ρ
1

2 eiS. If
θ = 0, this is the generalization of the Schrödinger equation which arises in
Stochastic Quantization with the Stochastic Lagrangian Variational principle
as introduced in [7, 8]. Indeed, for θ = 0 and A = 0, one gets the usual
Schrödinger equation. Moreover, if the Hamiltonian operator H = −1

2
∇2+V

is bounded from below in L2(dx), then for generic initial data the solution
asymptotically relaxes towards a solution where A is equal to zero almost
surely with respect to the Lebesgue measure. Thus the set of the solutions
to the canonical Schrödinger equation acts as an attracting set. Indeed,
denoting by E(t) the energy functional

E(t) =

∫

R3

[

1

2
|i∇ψ + Aψ|2 + V |ψ|2

]

dx

the “Energy theorem” proved in [7] claims that, under mild regularity as-
sumptions, the following equality holds

d

dt
E(t) = −1

2

∫

R3

|∇ × A|2 |ψ|2 dx ≤ 0 . (5)

If θ 6= 0, equation (4) arises naturally in the stochastic quantization of a
system of trapped pair interacting bosons [7]. Notably, the energy theorem
still holds in this case, with E(t) replaced by

Eθ(t) =

∫

R3

[

1

2
|i∇ψ + Aψ|2 +

θ

2
|ψ|2 + V |ψ|2

]

dx

while the right side of (5) remains unchanged (see [2]).
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Hereafter we assume θ = 0. Since the spectral method based on Hermite
functions appeared to be a good candidate for the simulation of vortex dy-
namics without causing spurious effects at the boundary, we chose to apply
it to equation (4). The energy theorem proved in [7, 8] assures that

E(t) =

∫

R3

[

1

2
|i∇ψ + Aψ|2 + V |ψ|2

]

dx < +∞ ,

therefore Aψ = Γ ∈ L2(R3 → C) and Γ can be naturally expanded into
Hermite functions. Equation (4) in the unknowns ψ and Γ reads















































ψψ̄
∂ψ

∂t
= − i

2
ψ(−ψ̄∇2ψ + |Γ|2 + iψ̄∇ · Γ + iΓ̄ · ∇ψ) − iψψ̄V ψ

ψψ̄
∂Γ

∂t
= − i

2
∇ψ̄ × (∇ψ × Γ) +

1

2
∇× [ψ̄(∇ψ × Γ − ψ∇× Γ)]+

ψ̄

[(

1

2
∇ψ − Γ

)

× (∇× Γ)

]

+
i

2
(ψ∇ψ̄ − ψ̄∇ψ) × (∇× Γ)+

[

1

2
(i − 1)∇ψ + Γ

]

× (∇ψ × Γ̄) + Γψ̄
∂ψ

∂t
,

(6)
where the first equation was multiplied by −iψ with the aim of having the
same “mass” matrix for both the equations when Galerkin’s method is ap-
plied. As in the previous case, we considered the 2D version of the model.
Integration by parts was applied to each second order term in the equa-
tions. Once the problem was discretized in space, the explicit Runge–Kutta–
Fehlberg 4(5) (RKF45) method with variable step size was employed for
time integration. It should be noticed that, although the method is explicit,
a linear system has to be solved at each stage because of the mass matrix.

If a linear-Gaussian initial condition with radial symmetry, namely

ψ0(r) =

√

σ0

π
e−σ0r2/2

A0(r) = −a0rr̂ + α0rθ̂

(7)

is taken for equation (4), then the global solution is still linear-Gaussian with
radial symmetry (cf. [9])

ψ(r, t) =

√

σ(t)

π
e−σ(t)r2/2

A(r, t) = −a(t)rr̂ + α(t)rθ̂
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where σ(t), a(t) and α(t) satisfy











σ̇(t) = −2a(t)σ(t) σ(0) = σ0

ȧ(t) = σ2(t) + α2(t) − a2(t) − 1 a(0) = a0

α̇(t) = −2(a(t) + σ(t))α(t) α(0) = α0

(8)

and the corresponding energy is

E(t) =
1

2σ(t)
(σ2(t) + a2(t) + α2(t) + 1) .

In order to verify the correct implementation, we chose a linear-Gaussian
initial solution (7), with Γ0(r) = A0(r)ψ0(r), for the PDEs system (6) and
compared the solution with that of the much simpler ODEs system (8).
In our first experiments, we successfully reproduced the “breathing” phe-
nomenon [5], i.e., we chose σ0 = 2, a0 = 0 and α0 = 0, so that the first
equation in system (6) is the linear Schrödinger equation multiplied by −iψψ̄
and the second one has the trivial solution Γ(t) ≡ Γ0 = A0ψ = 0 for t ≥ 0.
We observed the conservation of the energy and a perfect match between the
PDEs and ODEs results. Then we tested a more general linear-Gaussian so-
lution by taking the initial solution (7) with σ0 = 2, a0 = 1 and α0 = 2. The
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Figure 3: PDEs and ODEs computed energies for σ0 = 2, a0 = 0 and α0 = 0
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energy comparison is reported in Figure 3. We observe a very good agree-
ment of the computed energies up to about t = 0.5. Then, the solution of the
PDEs system departures from the correct solution, since the corresponding
energy increases instead of decreasing (see (5)). From the numerical point of
view, we can see that the RKF45 scheme, in the effort of limiting the error,
keeps reducing the time step size, up to useless values. In order to exclude
stiffness issues, we also implemented the backward (implicit) Euler method,
based on a Newton-like method with a modified Jacobian for the resulting
non-linear system, obtaining the same behaviour as for the explicit method.
A further investigation of the problem led to the conclusion that the mass
matrix is very ill-conditioned (condition numbers of order 1022). However,
when a0 = α0 = 0 and thus Γ(t) ≡ 0, despite of condition numbers of order
1018, the correct solution is very well captured and maintained in time. This
suggests that the errors due to the ill-conditioned mass matrix have a fatal
effect only when the second equation plays a non-trivial role in system (6).

Future work may be twofold: either ad hoc numerical methods for im-
proving the numerical solution of ill-conditioned systems should be devised,
or completely new approaches, such as Monte Carlo methods, should be em-
ployed.
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